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Abstract: This study proposes a vision-based Sim2Real transfer framework for map-free deep reinforcement learning (DRL)
navigation, integrating semantic segmentation and multi-sensor fusion to achieve stable autonomous navigation without prior
maps. The main contribution of this work is to demonstrate that a vision-based DRL policy trained entirely in simulation can
be successfully transferred to real-world environments through an integrated perception and localization framework. The pro-
posed system enables goal-directed navigation based on multi-sensor fusion of visual, inertial, and wheel-encoder information,
providing a lightweight and scalable solution for low-cost mobile robots.
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1’ INTRODUCTION Simulation Reality

As mobile robots become increasingly integrated into Multi-Sensor Fusion
real-world applications, the demand for robust and adaptive mu | SR s
navigation capabilities continues to grow. Autonomous mo-
bile robots are increasingly expected to navigate in complex lse”‘mca"za‘ion robol Base
indoor environments without relying on pre-built maps. Con- Reinforcement __NovgstnPoly @ Romee rocterel . Motors
ventional navigation pipelines depend on accurate localiza- I\/im”nput
tion against prior maps, leading to high sensor costs and lim- : o
ited practicality in dynamic settings. Reinforcement learning @ ST Y-umn;

(RL) offers an alternative by learning navigation behaviors
directly from sensor observations in simulation [1]. How- Fig. 1. Proposed vision-based Sim2Real transfer framework
ever, transferring such policies to real robots remains difficult
due to the Sim2Real gap caused by visual appearance differ-
ences, sensor noise, and localization errors. Addressing this
gap is essential for reliable deployment of vision-based RL
navigation in real-world environments.

This paper proposes a vision-based Sim2Real transfer

robust ego-motion estimation. The resulting pose informa-
tion is used to generate vector observations compatible with
the simulation-trained policy, thereby enabling stable execu-
tion of the learned navigation behavior in real environments.

framework for map-free deep reinforcement learning (DRL) 2. RELATED WORKS

navigation that integrates semantic segmentation and multi-

sensor fusion. As illustrated in Fig. 1, the framework con- Mobile robot navigation based on DRL has been widely
sists of two main stages: policy learning in simulation and studied. Early approaches demonstrated that RL can be ap-
Sim2Real transfer to real-world environments. A naviga- plied to navigation and obstacle avoidance using range sen-
tion policy is trained entirely in simulation using binarized sors or visual information [1]. With the development of deep
visual observations and structured vector inputs, to learn sta- neural networks, more recent studies have focused on learn-
ble goal-directed behaviors without relying on prior maps. ing navigation policies directly from high-dimensional sen-

To bridge the gap between simulation and reality, a vi- sor observations [2-4].
sual perception pipeline is designed to reproduce the same Many navigation systems employ range-based sensors
simplified visual representation used during training. Real- such as 2D-LiDAR, since distance measurements provide
world RGB images are converted into binary representations stable geometric information that is suitable for learning col-
through semantic segmentation, allowing the visual input in lision avoidance and goal-directed behaviors. LiDAR-based
real environments to remain consistent with the simulation DRL approaches have shown reliable performance in struc-
observations. This alignment reduces the appearance gap tured indoor environments [2]. However, LiDAR sensors
between simulation and real-world images, thereby enabling increase hardware cost and system complexity, which may
reliable Sim2Real transfer. limit their applicability to lightweight platforms.

In addition, a self-localization module based on multi- To reduce dependency on costly sensors, visual-based
sensor fusion is introduced to support real-world navigation. navigation using DRL has attracted attention [3]. Similar to
An Extended Kalman Filter (EKF) integrates information LiDAR, depth cameras provide explicit geometric distance
from vision, inertial sensing, and wheel encoders to provide information that can be directly used for navigation. How-

ever, depth cameras are sensitive to strong illumination and
t Daisuke Amano is the presenter of this paper. may fail under adverse lighting conditions.
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Fig. 2. Overview of the RL system architecture. (A) real-world environment modeling in Unity, with RGB images shown
to illustrate the visual consistency between the simulated and real scenes, (B) RGB images are binarized into a binary
environment representation to simplify visual observation input, and encoded by a CNN, (C) structured vector observations

representing ego-motion and goal-relative geometry.

Alternatively, monocular camera images can be used to
infer depth information and construct range-like represen-
tations for navigation, achieving effects similar to those of
depth-sensing cameras [4]. However, the depth estimation
from monocular images is sensitive to visual ambiguity and
environmental variations.

To improve robustness of visual perception, semantic seg-
mentation has been incorporated into navigation frameworks.
A navigation method using binary semantic segmentation ab-
stracts visual input and stabilizes policy learning [6]. How-
ever, the self-localization is still performed using LiDAR,
and relative distance and orientation information to the tar-
get are derived from LiDAR-based self-localization.

From these studies, it can be observed that range- and
depth-based approaches provide stable geometric informa-
tion at the cost of additional sensors, whereas monocular
vision-based navigation enables simpler sensor configura-
tions but suffers from perceptual ambiguity. This moti-
vates research on Map-Free navigation systems that leverage
abstracted visual information and auxiliary observations to
achieve robust action learning without relying on prior maps.

3. LEARNING A NAVIGATION POLICY IN
SIMULATION

To enable map-free navigation without relying on prior
environmental knowledge, we train an RL policy entirely in
a simulation environment implemented using Unity. This
section describes the key components involved in learning
such a navigation policy, including the simulation environ-
ment that employs a binary-simplified representation of the
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scene, the policy network architecture, the observation de-
sign, and the reward function used during training.

3.1. Simulation Environment

The navigation policy is trained in a simulation environ-
ment implemented in Unity. To enable Sim2Real transfer,
the corridor scene in Unity is modeled by reproducing the ge-
ometry and camera viewpoint of the real indoor corridor, as
illustrated in Fig. 2(A). In the real environment, RGB images
are captured by the camera mounted on the robot, while in the
simulation environment, a virtual camera is placed at the cor-
responding position and orientation. By aligning the corridor
structure and the first-person RGB view between simulation
and reality, the simulated images can be used to learn a nav-
igation policy that is consistent with the visual observations
obtained in the real world. These simulated RGB images are
then passed to the visual observation pipeline described later.

3.2. Policy Network Architecture

This study adopts Proximal Policy Optimization (PPO) [7]
and constructs an actorcritic policy network. Visual observa-
tions are encoded by a CNN, while vector observations are
directly fed into an MLP. The extracted features are concate-
nated and processed by an LSTM layer to retain temporal in-
formation under partial observability. From the LSTM out-
put, the actor module generates continuous control actions
a = (v, w,) for the robot. The critic module evaluates the
current state based on the same feature representation. PPO
updates both the actor and the critic using collected trajecto-
ries and rewards, enabling stable improvement of the policy
during training.
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3.3. Observation Space

The observation space consists of two complementary
modalities: a binary-simplified visual observation and a
structured vector observation, as illustrated in Fig. 2(B)-(C).
The configuration is chosen to facilitate stable learning in
simulation and to provide a representation that naturally ex-
tends to real-world sensing.

Visual observation: As shown in Fig. 2(B), RGB images in

simulation are converted into a binarized representation that

separates the floor from the surrounding structures. This rep-
resentation suppresses variations in color and illumination,
enabling stable learning of a navigation policy. The resulting

112 x 84 grayscale image is encoded by a CNN and passed

to the subsequent MLP-LSTM module in the policy network.

Vector observation: In addition to visual input, we incor-

porate vector observations that encode the agent’s geometric

relationship to the goal, as depicted in Fig. 2(C). These vec-
tor quantities are defined as follows:

1) Relative position and orientation of the agent
(Pagent > Pagent): The current position and orientation of
the agent are represented as the difference from its ini-
tial pose. The orientation angle is constrained to the
range [—m, 7w|. Such a representation has been reported
to be effective for map-free spatial understanding [3].

2) Relative position and orientation of the goal
(Pgoal> Pgoal): The goal pose is expressed as the relative
position and orientation with respect to the agent’s ini-
tial pose [3]. The orientation angle is also constrained
to the range [—, 7).

3) Relative direction and distance to the goal (6, d): The
bearing and Euclidean distance from the agent to the
goal are denoted by 6 and d, respectively. The angle 6 is
defined as the directed angle measured from the agent’s
forward direction and is normalized to the range [—1, 1]
for use as input to the neural network.

4) Linear and angular velocities (v,,v,,w): These are
dynamic observations that mimic an IMU: the linear ve-
locities v, and v, and the angular velocity w are com-
puted from the differences between the current and pre-
vious poses. This information helps the policy to cap-
ture the agent’s motion response and pose changes, and
has been reported to contribute to stabilizing the learned
policy [5].

5) Global bearing from start to goal (0,_,,): This is the
unique bearing from the start position to the goal at the
beginning of the episode. The value is provided as a
constant throughout the episode during training, and is
normalized to the range [—1, 1].

By integrating these structured geometric cues with the
visual input, the policy can infer navigation-relevant spa-
tial relationships that are difficult to estimate reliably from
vision alone, thereby enhancing robustness and supporting
later Sim2Real transfer.

3.4. Reward Design and Training Setup

To learn a stable and efficient navigation policy, we em-
ploy a composite reward function consisting of task-oriented
rewards and several penalties designed to suppress undesir-
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able behaviors. The overall reward configuration is summa-
rized in Table 1, and the details of each component are de-
scribed below.
Task-oriented rewards: A success reward is provided when
the agent reaches the goal, directly reinforcing task comple-
tion. In addition, to encourage progressive movement to-
ward the target, we introduce a distance reward based on
Yokoyama et al.’s [3] weighted-sum index of distance and
directional consistency:
Jnay =d+w -0, (1
where d denotes the Euclidean distance to the goal, 6 de-
notes the relative heading angle, and the weight coefficient
is set to w = 0.1. The reward at each step is given by the
change AJ,,, between consecutive time steps. The relative
angle 6 is evaluated only when the distance to the goal is
less than 2 m; otherwise, a constant value of 3.14 is substi-
tuted. This design suppresses excessive alignment behavior
when the agent is far from the target and helps prevent wall-
collision-prone motions.
Penalties for unstable behaviors: Multiple penalties are in-
corporated to stabilize learning, applied as follows:
1) Collision penalty: when the agent contacts obstacles.
2) Slack penalty: at every step to discourage stagnant mo-
tion.
3) Move-back penalty: to suppress negative linear veloc-
ity.
4) Oscillatory penalty: when repeated small-amplitude
shaking occurs.
5) Switch penalty: when forward-backward switching oc-
curs more than 3 times within 5 steps.
These penalties prevent unstable or unsafe actions and pro-
mote smooth forward navigation.

Table 1. Reward settings

Reward Type Reward Value
Success Reward +30
Distance Reward Adpay
Collision Penalty -20
Slack Penalty (per step) -0.01
MoveBack Penalty 2001
(negative linear velocity) )
Oscillatory Penalty 2001
(movement <0.05 m within 0.2 s) )
Switch Penalty 2001

(> 3 switches within 5 steps)

Training setup: The CNN encoder, MLP module, LSTM
layer, and the actor and critic heads are jointly optimized
throughout training, as shown in Fig. 2. The agent is trained
for 700,000 steps in the Unity simulation environment, dur-
ing which the navigation performance gradually converges.

4. SIM2REAL TRANSFER APPROACH

To apply the simulation-trained policy to the real robot, it
is necessary to compensate for the Sim2Real gap caused by
differences in observations. This section describes two key
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Fig. 3. Overview of the training-data preparation and segmentation pipeline, including I. construction of training dataset using
SAM2 to generate ground-truth masks, II. training of a UNet-ResNet50 segmentation model, and III. onboard inference for

real-time ground-region extraction.

components for real-world deployment: construction of a bi-
nary semantic segmentation model to extract ground regions,
and multi-sensor fusion for robust localization.

4.1. Visual Alignment via Semantic Segmentation

In the simulation environment, the observation was sim-
plified by binarizing the scene into ground and obstacles,
which contributed to stable policy learning. However, in the
real world, raw RGB images cannot reproduce the same rep-
resentation, resulting in a mismatch with the simulation. To
resolve this discrepancy, we construct a binary segmentation
model that extracts ground regions from real-world RGB im-
ages, enabling observations that closely match the binarized
representation used in Unity simulation.

Dataset Construction: To reproduce the binarized vi-
sual representation used in simulation, a dataset with high-
quality ground labels is required. Conventional plane-
detectionbased mask generation [6] suffers from insufficient
label accuracy, which can negatively affect training stability.
We then applied SAM2 [8] to extract ground regions with
high precision, as illustrated in Fig. 3(B). Based on these ex-
tracted regions, we generated binarized masks as in Fig. 3(C).
Finally, we constructed the training dataset by pairing the
RGB images with their corresponding binarized masks.

Training and Evaluation of the Binary Segmentation
Model: Although SAM?2 provides highly accurate segmenta-
tion, its high computational cost makes it unsuitable for real-
time onboard deployment. Therefore, a lightweight UNet-
ResNet50 model was trained using SAM?2-generated masks
as supervision to enable efficient inference on the robot.

Fig. 4 shows the training curves, indicating stable con-
vergence in terms of Dice loss and IoU. Representative real-
world inference results are shown in Fig. 3, which summa-
rizes the overall pipeline from training-data generation to on-
board deployment.
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Fig. 4. Learning curves of the segmentation model

4.2. Multi-Sensor Fusion for Robust Localization

To obtain a stable and drift-resistant estimate of the robot’s
pose, we integrate wheel-encoder odometry, visual odometry
(VO), and IMU data using an extended Kalman filter (EKF).
Each sensing modality provides complementary information,
and their fusion compensates for the individual weaknesses
of the sensors.

The EKF receives nine observation variables from three
sensing sources, summarized as follows:

1) ZED2i Visual-Inertial Odometry (VIO):
ZED2i VIO estimates the relative camera motion
by jointly tracking visual features and inertial mea-
surements, providing planar position observations
(Zvios Yvio). Although VIO can output a yaw estimate
dvio, its heading is sensitive to texture-poor environ-
ments, illumination changes, and rapid motion, which
may cause sudden jumps. Therefore, in this work, we
use VIO only for (z,y) observations, and do not use
¢vio for EKF correction.

2) Kobuki Wheel Odometry (WO):
Wheel odometry provides ego-motion estimates of for-
ward velocity v, and yaw rate w from motor encoder
readings. Since the robot follows a differential-drive
mechanism, lateral motion is physically constrained,
and v, and w are used for state propagation in the
EKF. Here, v, is used in the prediction step, while w
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Fig. 5. EKF framework for multi-sensor localization

from WO is used as a redundant rotational-rate input to-
gether with IMU. Nevertheless, systematic errors such
as wheel slip cause drift over time.
3) ZED2iIMU:
The ZED2i provides a high-frequency IMU, which out-
puts orientation @i, and angular velocity wiy,. Un-
like vision-based estimates, IMU measurements are not
affected by visual degradation. In this work, wipyy 1S
used as the rotational-rate input in the prediction step,
while ¢;y is incorporated in the update step to suppress
abrupt heading jumps in @yi,.
The EKF integrates heterogeneous observations through a
prediction—update cycle, as illustrated in Fig. 5. The system
state is defined as

)A(k: = [xka Yk, ¢k7 Ve k> wk)}—rv (2)

where (zy, Yk, ¢r) denote the planar position and heading,
and (vg i, wy) represent the forward velocity and yaw rate.
During the Prediction Step, the prior state estimate
is propagated using a differential-drive motion model and
wheel-encoder-based velocity estimates:

3)

where u, = [v,, w] | represents the estimated linear velocity
and yaw rate, and wy represents zero-mean process noise.
This prediction provides a smooth short-term estimate, but
accumulated uncertainty leads to drift over time.

During the Update Step, sensor observations are incorpo-
rated through the measurement model

Xplk—1 = f(fckfl\kfh Uk) + wy,

“4)

where zy is a composite observation vector consisting
of velocity estimates from VIO, planar pose observations
(,y, ) from wheel odometry, and rotational measurements
(Pimu, Wimu ) from the IMU. The measurement function h(-)
maps the predicted state to the observation space by selecting
and stacking the corresponding state components associated
with each sensor modality. The posterior state estimate is
obtained as

zr = h(Xpjk—1) + Vi,

Xijk = Xpk—1 + Kk (zxk — h(Rii-1) ) )]

where Ky denotes the Kalman gain. By combining these
complementary observations, the EKF corrects accumulated
linear and rotational errors. Specifically, VIO refines short-
term linear motion, wheel odometry stabilizes planar pose es-
timates, and IMU measurements suppress yaw drift through
redundant angular constraints [9].

Fig. 6 compares three localization methods: WO, VIO,
and EKF fusion. The robot is manually driven along a
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Fig. 7. Experimental environment map

closed-loop trajectory of approximately 40 m, completing
one full lap and returning to the starting position. Wheel
odometry exhibits gradual drift over time, while visual
odometry is susceptible to local fluctuations, particularly in
texture-poor regions. As shown in the trajectory compari-
son, the EKF-fused estimate does not strictly coincide with
either individual source, but achieves the smallest devia-
tion from the starting position after completing a full loop.
This indicates that the proposed fusion framework effectively
suppresses cumulative drift and local instability by balanc-
ing complementary error characteristics of different sensors,
leading to a more consistent and stable pose estimation.

5. EXPERIMENTAL EVALUATION

5.1. Experimental Setup and Procedure

Real-world navigation experiments were conducted to
evaluate the proposed Sim2Real transfer framework on a
mobile robot platform. The experimental system integrates
visual perception, localization, and navigation modules for
end-to-end autonomous navigation in real environments. The
detailed hardware and software configuration is summarized
in Table 2.

Table 2. System configuration of the experimental system

Component Specification / Purpose
Mobile Robot Base Kobuki (base platform)
Stereo Camera ZED?2i (RGB input, VIO)
Computing Unit NVIDIA RTX4060 Laptop

Software Environment  Ubuntu 24.04, ROS2 Jazzy

The experiments were performed in an indoor corridor en-
vironment. As shown in Fig. 7, the straight-line distance
between the start position and the goal position is approx-
imately 50 m. First, the robot was manually driven from
the start position to the goal using a remote controller, and
the goal position estimated by self-localization was recorded.
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After returning the robot to the start position and reinitializ-
ing the system, autonomous navigation was executed contin-
uously from the start to the goal (approximately 52 m) and
from the goal back to the start (approximately 58 m), result-
ing in a total travel distance of about 110 m. This step was
designed to evaluate the stability of the learned navigation
policy and the robustness of self-localization.

5.2. Experimental Results and Discussion

Experimental results confirmed that the robot was able to
navigate stably from the start to the goal and return to the
start in both directions. The corresponding round-trip trajec-
tories are shown in Fig. 8. In particular, the robot exhibited
highly stable motion in straight corridor segments. Although
situations were observed in which the robot approached the
wall near corners, it successfully corrected its heading and
continued navigation without collisions. These observations
indicate that the RL navigation model obtained in this study
exhibits a high degree of stability.

On the other hand, during the return navigation from the
goal to the start position, the robot reached the vicinity of the
initial location in a generally stable manner; Furthermore,
by comparing the recorded trajectories with the ideal path
inferred from the corridor layout, the cumulative root mean
square error (RMSE) over the trajectory is shown in Fig. 9.
As shown in the figure, the overall RMSE converges to ap-
proximately 2.18 m, reflecting the cumulative effect of local-
ization uncertainty over the long-horizon navigation task.

From these results, it is confirmed that the DRL-based
navigation model trained in the simulation environment can
operate stably in real-world environments. In particular, the
experiments demonstrate that even without using LiDAR and
relying on visual information, and without constructing a
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prior map, the robot is able to achieve stable navigation to-
ward the target destination.

6. CONCLUSION AND FUTURE WORK

This study explored the effectiveness of a map-free RL
navigation framework trained in simulation and transferred
to real-world environments through a vision-based Sim2Real
approach. By integrating semantic segmentation for vi-
sual alignment and EKF-based multi-sensor fusion for ego-
motion estimation, the proposed system demonstrates that
stable goal-directed navigation can be achieved without re-
lying on prior maps or LiDAR. These results indicate that a
vision-based DRL policy learned entirely in simulation can
be effectively deployed on a real mobile robot when appro-
priate perception and localization support is provided.

Although EKF-based sensor fusion improves the accuracy
and stability of self-localization, accumulated error remains
inevitable as the distance increases. Such drift originates
from odometry-based estimation and cannot be completely
eliminated by local sensor fusion alone. To address this lim-
itation, future work will explore more advanced localization
approaches, such as SLAM-based methods, to achieve more
robust pose estimation during long-distance navigation.
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