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This paper proposes a map-free navigation method for mobile robots using deep reinforcement learning
with visual and geometric observations. A novel start and goal configurations enable training including several
different situations. Furthermore, an angular feature indicating the global direction from the start to the
goal is introduced to improve policy stability as one of the observations. The effect of incorporating LSTM
is also evaluated. The performances of the proposed method are experimentally evaluated in simulation
environments.

1. 緒言
近年，深層強化学習を用いた行動モデルによる移動ロ

ボットの自律ナビゲーションのの研究がいくつか行われ
ている．筆者らは，行動モデルへの外界センサーからの
入力情報として，走行環境をセグメンテーションした単
眼カメラ画像を用いた手法 [1]や，深度カメラによる距
離データを用いた手法 [2]を提案してきた．深度カメラ
は Metaで開発されたシステム [3]でも行動モデルによ
るナビゲーションに使用されている．これらの入力情報
は，学習環境と実環境のギャップが小さく，Sim2Real
を実現する上で有効である．
本研究は，セグメンテーションした単眼カメラ画像に

基づく，Map-Freeなナビゲーションシステムを実現す
ることを目指している．上述した研究例ではいずれも何
らかの手法で取得した自己位置と目的地との相対距離・
姿勢情報を合わせて入力する行動モデルとなっている．
視覚情報に強く依存する構成であり，奥行き推定や方向
認識が不安定であり，目的地によっては到達することが
困難である．本稿では，このような背景を踏まえ，視覚
情報に加えて補助的な観測量を導入することで，目的地
の柔軟な設定に対応可能なMap-Freeナビゲーションの
ための行動モデルの学習に関して報告する．

2. 強化学習環境の構成
本研究では，著者らが所属する大学の廊下を模したシ

ミュレーション環境を Unity上に構築し，移動ロボット
に対する視覚強化学習モデルの訓練を行った．本環境は，
複数の交差点や分岐，長い廊下や隘路などを含む複雑な
構造を有しており，遠距離目標への回り込みやすれ違い
を伴うような高度なナビゲーション行動も求められる．
本章では，任意の目的地への汎用的なナビゲーション

方策の獲得を目的とし，強化学習環境の構成要素として，
視覚観測と動作出力の設計，訓練用マップの構造，およ
び初期位置と目的地の生成方式について詳述する．

2.1 エージェントの設計
2.1.1 エージェント視点のカメラ設定
本研究では，実機ロボットにて単眼カメラを搭載する

ことを想定したエージェントを用いる．カメラはエージ
ェントの前面に固定し，地面からの高さは約 77 cm，水
平方向に対して下方に約 4度傾けている．視野角は垂直
方向に 60 度とし，前方の床面や障害物の広い範囲を撮
影できる．取得画像の例を図 1（A）に示す．

（A）オリジナル画像 （B）二値化後の視点画像
図 1 エージェントの視点画像例

2.1.2 エージェントの動作設計と制御方式
エージェントの移動動作として並進速度と角速度の連
続値を方策ネットワークから出力し，それぞれ上限とな
る最大速度を定める．加速度には物理的な滑らかさを再
現するための制限を設けて，実環境における挙動に近づ
くよう，速度変化を段階的に補間する．さらに，動作の
多様性と過学習を抑制するため，角速度にランダムノイ
ズを導入する．これは，実機ロボットの走行中に生じる
微小な振動を模擬することを目的としており，非停止時
に微小なゆらぎを加えることで，実環境での頑健性の向
上が期待される．位置と姿勢は，更新後の並進速度およ
び角速度に基づいて，差動ロボットの理想的な運動モデ
ルに従って逐次更新される．
2.2 シミュレーション環境の設計
2.2.1 学習環境の二値化処理
視覚入力に含まれる不要な色情報や照明条件の変動

は，強化学習での不安定化を引き起こす．この影響を抑
えるため，床面を赤紫色（RGB: 225,105,180），壁面を
暗青色（RGB: 0,0,128）で塗り分けた二値化環境を導入
し，実環境での走行時に床面のセマンティックセグメン
テーションで二値化することを想定した構成とする [1]．
この処理により，視覚センサーからの入力画像における
ばらつきが抑えられ，学習の安定性と方策獲得の効率が
向上することが期待される．図 1（B）はエージェント視
点画像の一例を示す．
2.2.2 エージェントの初期位置と目的地の生成方法
学習時のエージェントの初期位置および目的地は，任

意の目的地に対するナビゲーション方策の汎化性能と訓
練時の効率性を高めるため，図 2 に示すような処理によ
り設定する．
図 3 に示された訓練用マップは，6 つのサブマップ
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図 2 エージェントの初期位置と目的地の生成方法

図 3 訓練用マップの分割例

（M1～M6）に分割して学習に用いる．同時に 13台のエ
ージェントを効率的に訓練することが可能である．M1～
M4 では，エージェントと目的地の双方を赤色の矩形領
域内からランダムに生成する．M1 はマップ全体を対象
しており，M2～M4 では訓練の安定性を高めるため，異
なる地形に対応した複数のサブ領域に分割し，特定の
構造に対する方策の獲得を促す設計とする．M5 および
M6 では，エージェントは緑色の矩形領域から，目的地
は水色の矩形領域から独立にランダム生成され，いずれ
も中央に長い廊下を含むような複雑な地形における遠回
り経路の学習を目的としている．いずれも，タスクが過
度に単純化されることを防ぐため，エージェントと目的
地のユークリッド距離が 10 m 以上となるようにする．
また，他物体が存在しない位置に設定するため，半径
r = 1.0m の衝突判定を行い，衝突のない位置が見つか
るまで繰り返す．さらに，初期化後，50% の確率でエー
ジェントの姿勢を目的地方向に向けて再設定する．これ
は，学習初期の探索の難易度を軽減し，目標への移動を
促すことを目的としている．

3. 強化学習モデルの設計
本章では，視覚入力と IMUを模した観測情報に基づ

き，エージェントが任意の目的地に自律移動するための
強化学習モデルの設計について述べる．到達距離や動作
の安定性などを意識した報酬設計を行い，ナビゲーショ

図 4 LSTM構造付き方策ネットワーク

ン行動の最適化を目指している．

3.1 モデルの構造
強化学習アルゴリズムとして PPO（Proximal Policy

Optimization）[4] を採用し，観測情報に基づき連続行動
a = (vπ, ωπ) を出力する方策ネットワークを構築する．
また，部分可観測性への対応として，ネットワーク内

部に LSTM（Long Short-Term Memory）を導入した．
視覚画像とベクトル観測を統合し，LSTMにより時系列
情報を保持することで，遮蔽環境でも頑健な方策が得ら
れる．このような構成は，部分可観測環境における強化
学習に有効であることが報告されている [5]．方策ネッ
トワーク全体の構成を図 4 に示す．

3.2 観測情報の設計
3.2.1 全体方位角の導入
著者らの過去の研究では，相対距離や方位角など短期

的な観測に基づく制御方策を用いており，正確な自己位
置を取得していることを前提としていた [1]．一方，IMU
のような自己中心的観測のみに依存する構成の場合は，
方位の整合性が崩れやすく，長期的な誘導が困難となる．
そこで本研究では，進行方向のアンカーとして，スター
ト地点から目的地への全体方位角を導入する．この値は
エピソード開始時に一意に定義され，学習中は常に一定
値として与えられる．

3.2.2 ベクトル観測情報
前節の「全体方位角」を含む一連の幾何・運動情報を，

方策学習に用いるベクトル観測情報として設計する．こ
れらは ROS 実機への方策転移を想定し，Unity 上で得
られるエージェント基準情報から，IMUやオドメトリを
模倣して構成する．各観測量は以下の 5種類からなる：
(1) エージェントの相対位置と姿勢（pagent, ϕagent）
エージェントの現在位置と姿勢を，その初期位置と
の差分として算出したものである．姿勢角は [−π, π]

の範囲とする．このような表現は地図非依存の空間
把握に有効とされている [3]．

(2) 目的地の相対位置と姿勢（pgoal, ϕgoal）
エージェントの初期位置を基準とした目的地との相
対位置・姿勢 [3]．姿勢角は [−π, π] の範囲とする．

(3) エージェントと目的地の相対方位角と距離（θ, d）
エージェントから見た目的地の方向とユークリッ
ド距離を表す．θ は前方を基準とした有向角度であ
り，ニューラルネットワークへの入力として扱いや
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図 5 提案モデルにおけるベクトル観測情報の構成

すくするために [−1, 1] に正規化する．
(4) 並進速度および角速度（vx, vy, ω）

IMUを模倣した動的観測量であり，現在と 1ステ
ップ前の位置・姿勢の差分から算出する．この情報
は環境応答や姿勢変化の理解を助け，方策の安定化
に寄与するとされている [6]．

(5) 初期位置から目的地への全体方位角（θs→g）
エピソード開始時におけるスタート地点から目的地
への一意な方向角．学習中のすべてのステップで定
数として与える. この値も [−1, 1] に正規化する．

ベクトル観測情報の全体構成を概略的に図 5 に示す．
3.2.3 視覚観測情報
第 2.1.1節で述べたエージェント視点カメラから取得
した画像に前処理を施し，解像度 112 × 84 のグレース
ケール画像として CNNベースの視覚エンコーダに入力
することで，空間的特徴量を抽出し，ベクトル観測情報
と統合して方策ネットワークの入力とする．
3.3 報酬関数の設計
ナビゲーションの安定性と効率性を両立させるため
に，目標到達時の「成功報酬」，目標へ移動を促す「距離
報酬」，および複数の罰則（負の報酬）から成る複合報酬
関数を設計する．各報酬の構成を表 1に示す．
「距離報酬」には，Yokoyamaらの提案する距離と方向
整合性の加重和指標 Jnav = d + w · θ の変化量 ∆Jnav
を採用した [3]．ここで，d は目的地までのユークリッド
距離，θ は相対角度（ラジアン），重み係数は w = 0.1 に
設定した．また，θ の算出は距離が 2 m未満の場合に限
り行い，それ以外では定数 3.14 を与える．これは近距
離以外での過剰な整列を抑え，壁衝突を防ぐためである．
さらに，特定の望ましくない行動を抑制し，学習の安

定化を目的として，壁との衝突を避けるための「衝突罰
則」，行動の遅延を避けるための「遅延罰則」，負の並進
速度を抑制する「後退罰則」，速度や方向の過度な振動
を抑える「振動罰則」，前後移動方向の頻繁な切替を抑
える「切替罰則」を導入した．

表 1 報酬設計
報酬項目 報酬値
成功報酬 +30
距離報酬 ∆Jnav
衝突罰則 -20
遅延罰則 (1ステップごとに) -0.01
後退罰則 (負速度時) -0.01
振動罰則 (0.2秒以内移動 0.05 m未満) -0.01
切替罰則 (5ステップ切替 3回以上) -0.01

4. シミュレーション環境における検証実験
本章では，訓練過程の各種記録データを通じてモデル

の性能と行動特性を分析し，複数の検証用マップでの走
行により提案手法の有効性を検証した結果を報告する．
4.1 比較モデルの構築方針
提案手法の各設計要素が学習に与える影響を検証する

ために，図 3 に示した訓練用マップの複数のサブマップ
上で，それぞれ 11 体のエージェントを並列に学習させ
ることで，4種類の比較モデル（A～D）を構築した．具
体的には，「全体方位角の導入」と「LSTMモジュールの
有無」という 2つの要素の組み合わせを変化させて評価
した．各モデルに含まれる設計要素の有無を表 2 に示す．

表 2 各モデルにおける設計要素の有無
モデル 全体方位角 LSTM

A 有 有
B 無 有
C 有 無
D 無 無

4.2 訓練過程における性能と安定性の比較評価
前節で設計した 4種類の比較モデル（A～D）に対し
て，図 3に示す訓練用マップ上で最大 700万ステップの
強化学習訓練を実施した．図 6は，各モデルを 13体のエ
ージェントで並列訓練した際の代表的な指標推移を示し
ており，10,000ステップごとのエピソードに基づく平均
値を可視化している．
この結果から，モデル Aは最も高い成功率を安定して
示しており，他モデルに対して一貫して優れた性能を達
成した．モデル B と C は中程度の性能を維持し，モデ
ル Dは成功率が低い傾向を示している．また，モデル A
は累積報酬・距離報酬ともに良好である一方，振動・後
退などの罰則が最小であり，望ましくない動作の抑制に
成功している．さらに，方策エントロピーの推移は，モ
デル A が過学習を避けつつ行動確定性を高めているの
に対し，モデル Dは探索不足により早期に収束し多様な
戦略の学習に失敗している可能性を示唆している．
以上より，提案手法であるモデル Aは，全体的に最も

安定かつ高性能なナビゲーション方策を獲得しており，
他モデルと比較して明確な優位性が実証された．
4.3 テストマップにおける走行性能評価
図 7 に示す 4種類の検証実験用マップ（T1～T4）に
おいて，モデル A～Dを用いた定量的な走行性能評価実
験を実施した．各マップに対して，2.2.2 節で述べた方
法により初期位置と目的地を設定し，モデルごとに 100
エピソード（各エピソードは 10,000 ステップ）ずつ走
行させた．表 3は，その評価結果として，成功回数・衝
突回数・途中終了回数の内訳と，それに基づく成功率を
示している．ここで，「成功」とはエージェントが最大ス
テップ数以内に目的地に到達した場合，「衝突」は障害
物に接触してエピソードが強制終了した場合，「途中終
了」は最大ステップ数以内に目的地に到達できなかった
場合を指す．

T1は訓練に用いたマップ全体を対象とし，T2と T3
は左右端の遠距離経路を抽出した構成である．T2 では
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図 6 訓練過程における代表的な報酬と指標の推移

図 7 検証実験用マップ
狭い通路での方向調整，T3 では凹型地形の回避が求め
られる．T4は中央に長い廊下区間を含み，遠回り経路を
通過しなければ到達できない難易度が高い構造を持つ．
表 3 に示す通り，T1においてモデル Aは成功率 83%
を記録し，他モデルを大きく上回った．T2ではモデル B
が 75%とわずかにモデル A（74%）を上回ったが，T3
および T4のような長距離・複雑経路においては，モデ
ルAがそれぞれ 67%，59%と最も高い到達率を示し，他
モデルに対して明確な優位性を示した．これらの結果か
ら，提案手法に基づくモデル Aは，長距離経路や複雑構
造を含む環境下の走行で，他の比較モデルに対して明確
な優位性を有することが確認された．
5. まとめと今後の課題
本稿では，任意の目的地への到達を目指す強化学習ナ

ビゲーションにおいて，視覚および IMUを想定した観
測設計を行い，安定した方策学習を実現するモデルを構
築した．また，複数の比較モデルとの走行性能評価によ
り，提案手法に基づくモデル A が最も高い成功率を示
し，特に長距離や複雑な経路条件での高い到達性能を確
認した．
今後の課題としては，まず実機 ROSロボットへの展
開を見据えた Sim2Real転移の検証が挙げられる．現時
点ではシミュレーション環境での検証に留まっており，

表 3 各モデルの走行性能および失敗要因の比較

マップ モデル 成功
回数

衝突
回数

途中終了
回数

成功率

T1
A 83 13 4 83%
B 48 32 21 48%
C 37 35 28 37%
D 43 29 28 43%

T2
A 74 25 1 74%
B 75 24 1 75%
C 0 73 27 0%
D 20 23 57 20%

T3
A 67 32 1 67%
B 4 51 45 4%
C 13 85 2 13%
D 0 13 87 0%

T4
A 59 32 9 59%
B 8 46 46 8%
C 7 26 67 7%
D 0 13 87 0%

現実環境におけるセンサーノイズや認識誤差への耐性を
含めた評価が必要である．また，モデル A の挙動を詳
細に分析したところ，右方向への旋回がやや多く発生す
る傾向が観察された．このような片方向への行動偏りは，
強化学習においてしばしば報告される局所的な最適解へ
の収束の一形態であり，本研究においては訓練時に用い
たマップ分割の都合により，右折経路の方が目的地に到
達しやすいケースが多く存在したことが原因と考えられ
る．今後は，地図の構造や初期位置と目的地の分布に対
するバイアスを抑制し，よりバランスの取れた経路探索
能力を実現するための学習環境の改良が求められる．
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