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Sim2Real Navigation Based on Map-Free Reinforcement Learning in Real

Environments

O Daisuke AMANO (Meiji University), and Kazuyuki MORIOKA (Meiji University)

Abstract:  This study investigates Map-Free reinforcement learning (RL) navigation without relying on 2D LiDAR or pre-
built maps. An RL policy trained in a Unity simulation was transferred to a real robot within a Sim2Real framework. In real
environments, binary ground segmentation was achieved using a Unet-ResNet50 model trained with masks generated by SAM?2.
For self-localization, Visual-Inertial Odometry (VIO) was employed using a stereo camera and IMU. Real-world experiments
demonstrated the feasibility and effectiveness of the proposed approach.
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Fig.1 The view from the agent’s perspective
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Fig. 2 Vector observations used in the RL model
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Table 1 Reward settings

Reward Type Reward Value
Success Reward +30
Distance Reward AJnay
Collision Penalty -20
Slack Penalty (per step) -0.01
MoveBack Penalty 20.01

(negative linear velocity)

Oscillatory Penalty )
(movement <0.05 m within 0.2 s) 0.01

Switch Penalty )
(= 3 switches within 5 steps) 0.01
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(b) Detected Ground by SAM2

(c) Binarized Mask

Fig.3 Examples of the constructed dataset
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Fig. 4 Learning curves of the segmentation model
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Fig.5 Detected obstacles in the real environment
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Fig. 6 Experimental hardware configuration

Table 2 System configuration of the experimental system

Component Specification / Purpose

Mobile Robot Base

Stereo Camera

Kobuki (base platform)
ZED?2i (RGB input, VIO)
NVIDIA RTX4060 Laptop
Ubuntu 24.04, ROS2 Jazzy

Computing Unit
Software Environment

4. EREITIRIEER

ARETIE, AR THRNTEEREADIIBTFIELHA
Ab¥Eszrickh, BEoRy b EHVEEET
FhR7% @ U TRl 21TV, 1R FIETH % Map-Free 7
LB F s — a v ORI ERIET 5.
41 P RATLIERK
EEETEBRICZE, BEFory 7S5y b7 +—24
& LT Kobuki ZFH\, EHEICRAT LA A RS ZED2i %
FEE L CEREEGE X 0 H AN EHEE I KB VIO 18
WERIG U7, FHEAEICIE, GPU (NVIDIA RTX4060
Laptop) Zf&# L7/ —  PC M\, ROS2 BHE LT
“fEfbaEle T e b E S F e S - a v
HREFIT L. ERI AT LDON— Y78 %
Fig. 6 12, TE2{LkE% Table 2 1”3 . 72, EEH
DROS2 /— 277 7% Fig. TITRT.

42  EEAE
KEEGETHEBRZ, FTE T 2 KFEDE R TIT - 7.
Fig.8 \ "R X912, =—Y =¥ b OWIHINIE (Start) 7
5 HAH (Goal) £ TOELREHEIN 50m TH 3.
F9, VeEaryEHWwWTeRy FEFHAME? S H
HHh % CETXE, ZORRIC VIO Ik bi#ftEgxh-H
FIHL D FERE 2 308k L=, 20, vRy M2 HUOH
MEICRL, A7 a2t L7, wIED> S H
H TR 53m DET (ke r, HyHi
SHHANE £ TOR 57m DEFT CREDRRE) % Ek
LTITW, B 110m OREREEGEITHEBRZ EM L 7=,

43 EREBERCEE

EEROME, vIHMED S B E ToET, BX
CH I S FHAME £ TOETOVTHIIBNTH,
Ry MILEMERMTRZEL TIEET 2 Zeh
RSNz, 2N 2N OEITRENIZN 150 #F XUH
170 TH Y, ZOFHEDETHHZ Fig.9 1R, K

- 4582 -



Fig.7 ROS2 node graph during the experiment

Fig. 8 Experimental environment map
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Fig. 9 Trajectory of the robot during the experiment
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Fig. 10 Progressive RMSE of trajectory vs ground truth
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